Complementary sequences 1700 nucleotides apart form a ribonuclease III cleavage site in Escherichia coli ribosomal precursor RNA.

نویسندگان

  • R A Young
  • J A Steitz
چکیده

The nucleotide sequence of Escherichia coli DNA at both ends of the gene for 16S rRNA has been determined for two rRNA operons, rrnD and rrnX. The 400 nucleotides we have examined exhibit only one base change between rrnD and rrnX. Within the 160 nucleotides that precede mature 16S rRNA sequences are cleavage sites for several E. coli endonucleases, including RNase III. A 240-nucleotide segment encompassing the 16S 3' end contains another RNase III site and the point of presumed RNase P scission at the 5' end of tRNA1Ile, the first tRNA appearing in the 16-23S spacer region of rrnD and rrnX. Most importantly, the DNA sequences predict that regions flanking the 16S gene in the rRNA primary transcript extensively base pair to form a double-helical structure whose hairpin loop includes the entire mature 16S molecule; within this structure is a 26-base-pair stem containing the two sequences at which RNase III action generates the 5' and 3' ends of a previously characterized precursor to 16S rRNA. Although our proposed secondary structure for this RNase III site is superficially dissimilar to previously described cleavage sites in the T7 early mRNA precursor, certain common features may constitute signals for RNase III recognition. The suggestion that distant portions of an RNA molecule can form a secondary structure within which specific endonucleolytic cleavages occur may have mechanistic implications for the joining of noncontiguous portions of gene sequences evident in several eukaryotic mRNAs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RNase III cleavage is obligate for maturation but not for function of Escherichia coli pre-23S rRNA.

RNase III makes the initial cleavages that excise Escherichia coli precursor 16S and 23S rRNA from a single large primary transcript. In mutants deficient in RNase III, no species cleaved by RNase III are detected and the processing of 23S rRNA precursors to form mature 23S rRNA fails entirely. Instead, 50S ribosomes are formed with rRNAs up to several hundred nucleotides longer than mature 23S...

متن کامل

The structure of the RNA binding site of ribosomal proteins S8 and S15.

Proteins S8 and S15 from the 30 S ribosomal subunit of Escherichia coli were bound to 16 S RNA and digested with ribonuclease A. A ribonucleoprotein complex was isolated which contained the two proteins and three noncontiguous RNA subfragments totaling 93 nucleotides, that could be unambiguously located in the 16 S RNA sequence. We present a secondary structural model for the RNA moiety of the ...

متن کامل

Processing of Escherichia coli 16S rRNA with bacteriophage lambda leader sequences.

To test whether any specific 5' precursor sequences are required for the processing of pre-16S rRNA, constructs were studied in which large parts of the 5' leader sequence were replaced by the coliphage lambda pL promoter and adjacent sequences. Unexpectedly, few full-length transcripts of the rRNA were detected after the pL promoter was induced, implying that either transcription was poor or m...

متن کامل

Purification and properties of a specific Escherichia coli ribonuclease which cleaves a tyrosine transfer ribonucleic acid presursor.

Precursor molecules of Escherichia coli wild type and mutant tyrosine tRNA’s contain at both their 5’ and 3’ termini extra nucleotides in addition to those of the mature tRNA molecule. The early steps of processing these precursor molecules must involve specific ribonuclease cleavage. We report the isolation from E. coli extracts of the specific endonucleolytic RNase which cleaves only a single...

متن کامل

RNase III cleavage demonstrates a long range RNA: RNA duplex element flanking the hepatitis C virus internal ribosome entry site

Here, we show that Escherichia coli Ribonuclease III cleaves specifically the RNA genome of hepatitis C virus (HCV) within the first 570 nt with similar efficiency within two sequences which are 400 bases apart in the linear HCV map. Demonstrations include determination of the specificity of the cleavage sites at positions C27 and U33 in the first (5') motif and G439 in the second (3') motif, c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 75 8  شماره 

صفحات  -

تاریخ انتشار 1978